GASMISCHER KM 1000/1500-FLOW MAP

Mischsysteme für 2 oder 3 definierte Gase für das Verpacken unter Schutzatmosphäre in der Lebensmittelbranche.

Geeignet für alle Arten von Vakuum-, Tiefzieh-, Schlauchbeutel- oder Handkammer-Verpackungsmaschinen.

Der KM-FLOW verwendet elektronische Mass Flow Controller (MFC) statt herkömmlicher Proportionalventile zur Zusammensetzung des Gasgemisches.

Durch die Kombination mit einer Analyse ergibt sich eine Maximierung der Verpackungsqualität bei gleichzeitiger Minimierung des Gasverbrauchs. Dieser effiziente Workflow ist mit MFC ideal realisierbar.

Leistungsbereiche 25 bis 500 NI/min je Gaspfad. Ermöglicht sowohl hohe Momentanverbräuche wie auch kleinste Entnahmen bei gleichbleibender Mischgenauigkeit.

Vorteile

- leichte Bedienbarkeit über Touch-Screen
- auf Knopfdruck oder per Barcode Reader frei programmierte Gasgemische wählbar
- vereinfachte Auswertung der Messdaten durch digitalen Datenbus
- Kostenreduzierung durch optimierten Gasverbrauch, da PID-Regelung der Ausgangsmenge pro Produkt definierbar (nur in Kombination mit einer Analyse)
- wartungsarm
- gut lesbares Display
- USB Anschluss zur Datenübertragung per USB-Stick
- · Produktnamenverwaltung zur individuellen Zuordnung
- Messdatenspeicher
- Benutzerebenen mit verschiedenen Zugriffsrechten
- bis zu 3 Geräte kaskadierbar, wovon ein Gerät mit Display und die anderen als Black-Box ausgeführt sind

Hohe Prozesssicherheit

- Messwertspeicher
- Permanent-Kontrolle der O₂-Konzentration
- elektronische Gasdurchflusskontrolle, Fehlermeldungen oder Überschreitungen der Grenzwerte erzeugen einen Alarm und schalten einen potentialfreien Kontakt. Dieser stoppt Ihren Prozess (z.B. Ihre Verpackungsmaschine) zur Vermeidung von Qualitätsproblemen

Abbildung zeigt Variante mit Analyse

- abschließbare Sichtscheibe zum Schutz der Geräteeinstellungen (optional)
- unabhängig von Vordruckschwankungen
- unabhängig von Verpackungsgeschwindigkeiten
- unabhängig von Packungsgrößen

Hygienefreundlich

- spritzwassergeschütztes, unempfindliches Edelstahlgehäuse
- glatte und leicht zu reinigende Oberflächen für perfekte Hygiene

Optionen

- Software GASCONTROL CENTER zur Messdatenauswertung inkl. Datenkabel (siehe separates Datenblatt)
- integrierter Messwertspeicher
- Datenübertragung der Messergebnisse via Ethernet
- Barcode-Reader zur Auswahl von Produktnamen

Weitere Ausführungen und Optionen sowie Zubehör auf Anfrage.

Bitte geben Sie bei Anfragen die gewünschten Gasarten an!

Typ KM 1000-2 FLOW MAP, KM 1500-3 FLOW MAP

Gase N₂, CO₂, O₂

andere Gase und Anwendungen siehe Datenblatt KM17.2

Regelgenauigkeit ±1,5% vom Messwert zzgl.

±0,3% vom Endwert

Reproduzierbarkeit ±0,1% vom Endwert

Gaseingangsdrücke max. 10 bar

Gasausgangsdruck min. 0,5 bar kleiner als der Eingangsdruck

 $\begin{array}{ccc} \textbf{Gasleistung} & \textbf{O}_2 & \text{max. 500 NI/min} \\ \textbf{CO}_2 & \text{max. 500 NI/min} \end{array}$

N₂ max. 500 NI/min

Temperatur (Gas/Umgebung) 0-40 °C

Gasanschlüsse G 1/2 RH mit Senker, WITTFIX AD 10 mm

Alarmkontakte je ein min./max. Grenzwert O₂, mit potentialfreiem Wechslerkontakt

Schnittstellen USB per Stick für Produktdaten

RJ45 Ethernet FTP-Server für Produktdaten, Durchflusswerte, Software Update

Gehäuse Edelstahl, spritzwassergeschützt (mit Tür)

Gewicht ca. 35 kg

Abmessungen (HxBxT) ca. 325 x 480 x 500 mm (ohne Anschlüsse und Tür)

Spannungsversorgung 230 V AC, 110 V AC, 24 V DC

Stromaufnahme 230 V AC / 1,0 A

Normen/Baubestimmungen Unternehmen zertifiziert nach ISO 9001 und DIN EN ISO 22000

CE-Kennzeichnung gemäß:

- EMV 2014/30/EU

Niederspannungsrichtlinie 2014/35/EU für Lebensmittelgase geeignet gemäß:
Verordnung (EG) Nr. 1935/2004

Ausgelegt für O₂ gemäß EIGA 13/20 und CGA G-4.4:

Oxygen Pipeline and Piping Systems

Gereinigt für O₂ gemäß EIGA 33/18 und CGA G-4.1:

Cleaning of Equipment for Oxygen Service

Mischgasleistun	g (in N	l/min) bezog	en auf CO, ur	nd 1 Gaspfad									
	•	Ausgangsdruck in barÜ											
			2	3	4	5	6		8	9			
	2	340	_	_	_	_	_	_	_	_			
	3	480	375	_	_	_	_	_	_	_			
min.	4	500	500	435	_	_	_	_	_	_			
Eingangsdruck	5	500	500	500	495	_	_	_	_	_			
in barÜ	6	500	500	500	500	500	_	_	_	_			
(max. 10 bar)	7	500	500	500	500	500	500	_	_	_			
	8	500	500	500	500	500	500	500	_	_			
	9	500	500	500	500	500	500	500	500	_			
	10	500	500	500	500	500	500	500	500	500			

Mischgasleistun	g (in NI	/min) bezog	en auf O ₂ und	1 Gaspfad								
		- Ausgangsdruck in barÜ										
			2	3	4	5	6		8	9		
	2	286	_	_	_	_	_	_	_	_		
	3	415	360	_	_	_	_	_	_	_		
min.	4	500	475	395	_	_	_	_	_	_		
Eingangsdruck	5	500	500	500	435	_	_	_	_	_		
in barÜ	6	500	500	500	500	450	_	_	_	_		
(max. 10 bar)	7	500	500	500	500	500	495	_	_	_		
`	8	500	500	500	500	500	500	500	_	_		
	9	500	500	500	500	500	500	500	500	_		
	10	500	500	500	500	500	500	500	500	500		

Mischgasleistun	g (in N	l/min) bezog	en auf 50% C	O₂/ 50% O₂ u	nd 2 Gaspfac	le						
		Ausgangsdruck in barÜ										
			2	3								
	2	584	_	_	_	_	_	_	_	_		
	3	876	609	_	_	_	_	_	_	_		
min.	4	1000	1000	774	_	_	_	_	_	_		
Eingangsdruck	5	1000	1000	1000	848	_	_	_	_	_		
in barÜ	6	1000	1000	1000	1000	970	_	_	_	_		
(max. 10 bar)	7	1000	1000	1000	1000	1000	1000	_	_	_		
`	8	1000	1000	1000	1000	1000	1000	1000	_	_		
	9	1000	1000	1000	1000	1000	1000	1000	1000	_		
	10	1000	1000	1000	1000	1000	1000	1000	1000	1000		