GAS MIXER KM 10-2 FLEX

Gas mixing systems for 2 defined gases, designed for variable processes with a mixing range from 5-92%. See other ranges on overleaf.

Specially designed for applications with only low gas consumption. Ideally suitable as a portable desktop unit, e.g. for laboratory applications.

Using a new mixing technology, no receiver is required.

Capacity range up to approx. 28 Nl/min. For the exact pressure and flow capacity ratios, please see the technical data.

Benefits

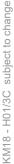
- high mixing accuracy
- avoids the need to stock multiple pre-mixes (cost saving)
- does not require receiver (cost and space saving)
- inlet gas filters protect the device against impurities
- pneumatic operating principle, no electrical connections required
- mixed gas production from 1 l/min to the max. flow
- robust, compact design
- minimal maintenance required

Easy operation

• a mixing valve with a control knob and %-scale provides infinitely variable mixture settings

High process reliability

- independent of pressure fluctuations in the gas supply
- independent of withdrawal fluctuations (in permitted range)
- fail safe design (unit shuts down on failure of either gas supply)
- · lockable to prevent tampering


Options

 alarm module AM3: integrated inlet pressure monitoring with digital display for pressure (with analog pressure transmitters) plus optical alarm, adjustable alarm limits, obligation of acknowledgement, protection of alarms, interfaces for controlling external alarms etc.

Other models, options and accessories available upon request.

Please identify the individual gases at the time of enquiring!

Flow KM 10-2 FLEX (in NI/min) in relation to N ₂ min. mixed gas production 1 I/min																	
						outlet pressure in barg											
		0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0
min.	3.0	6.7	5.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4.0	9.4	9.3	8.5	5.8	-	-	-	-	-	-	-	-	-	-	-	-
	5.0	12.6	12.6	12.4	12.3	11.1	8.1	-	-	-	-	-	-	-	-	-	-
inlet pressure in barg	6.0	15.4	15.2	15.2	15.2	14.7	14.4	13.3	8.6	-	-	-	-	-	-	-	-
(max. 10 bar)	7.0	18.6	18.5	18.4	18.3	18.2	18.1	17.8	17.0	14.8	9.4	-	-	-	-	-	-
	8.0	21.5	21.3	21.2	21.1	20.9	20.9	20.8	20.7	20.4	18.8	16.6	10.3	-	-	-	-
	9.0	24.9	24.8	24.7	24.6	24.5	24.5	24.4	24.3	24.2	24.1	22.3	20.9	17.6	10.5	-	-
	10.0	28.2	28.0	27.9	27.8	27.7	27.6	27.4	27.3	27.2	27.1	27.0	26.9	25.6	23.2	19.9	12.4

GAS MIXER KM 10-2 FLEX

Туре	KM 10-2 FLEX						
Gases	all technical gases (excluding toxic or corrosive gases, also no mixtures of fuel gases with air, O_2 or N_2O)						
Mixing range	5 – 92% according to gas combination (see table) by selection of suitable mixing range the accuracy corresponds to ISO 14175						
Pressure settings	see table on the front page						
Inlet pressure differential between the gases	max. 3 bar						
Mixture output (N ₂)	see table on the front page (other gases on request)						
Setting accuracy Mixing range 1: 5 bis 20% Mixing range 2: > 20%	± 10% of the nominal value ± 2% absolute						
Temperature (gas/environment)	-25 °C to +50 °C (-13 °F to +122 °F)						
Gas connections fuel gas connection	G 1/4 RH with cone, hose nipple 6 mm G 3/8 LH with cone, soldering nipple for pipe OD 10 mm						
Housing	stainless steel						
Weight	approx. 10 kg						
Dimensions (HxWxD)	approx. 316 x 158 x 370 mm (12.4 x 6.2 x 14.6 inches) without connections						
Approvals	Company certified according to ISO 9001 and ISO 22000						
	CE-marked according to: - ATEX 114 Directive 2014/34/EU (without plastic handle)						
	for food-grade gases according to: - Regulation (EC) No 1935/2004						

Note: The determined data of mixture output are only in relation to $N_2!$ The use of other required gases results in a difference to the mixture output, which is compensated by the correction factor F_{MIX} :

F_{MIX} for concentrations (example):

	GAS 1	GAS 2	F _{MIX}
mixture	CO ₂	Ar	
admix proportion in Vol.%	18	82	0.8812
admix proportion in Vol.%	25	75	0.905
mixture	CO ₂	N ₂	
admix proportion in Vol.%	30	70	1.048
admix proportion in Vol.%	80	20	1.128
mixture	He	Ar	
admix proportion in Vol.%	20	80	0.866
admix proportion in Vol.%	60	40	0.958
mixture	He	N ₂	
admix proportion in Vol.%	10	90	1.005
mixture	02	Ar	
admix proportion in Vol.%	10	90	0.826
mixture	02	N ₂	
admix proportion in Vol.%	25	75	0.97
mixture	02	CO2	
admix proportion in Vol.%	50	50	1.02
admix proportion in Vol.%	85	15	0.922

Possible admix range					
Mix	Range				
CO ₂ in Ar	5-92% CO ₂				
CO_2 in N_2	5-92% CO ₂				
CO ₂ in Air	5-92% CO ₂				
O_2 in CO_2	5-85% O ₂				
O ₂ in Ar	5-92% O ₂				
O ₂ in He	5-88% O ₂				
O_2 in N_2	5-87% O ₂				
He in Ar	5-92% He				
He in N ₂	5-87% He				
N ₂ in Ar	5-92% N ₂				